

FLT3 Muta Prime FA Kit, 24 теста (IG-FA-4-24) ИНСТРУКЦИЯ

по применению набора реагентов **FLT3 Muta Prime FA Kit, 24 теста** для качественного выявления мутаций в гене FLT3 ITD и D835 в ДНК пациентов с острым миелоидным лейкозом (ОМЛ, AML) методом полимеразной цепной реакции (ПЦР) с последующим фрагментным анализов методом капиллярного гельэлектрофореза.

Совместимы с генетическими анализаторами Life Technologies (3130, 3500, 3500xl)

НАЗНАЧЕНИЕ ТЕСТА

Рецептор FLT3 (fms like tyrosine kinase 3) относится к семейству клеточных белков, которые совмещают в себе функции рецептора и внутриклеточной тирозинкиназы. Нарушение процесса рецепторной регуляции внутриклеточных структур является основным звеном в патогенезе острого миелоидного лейкоза. Мутации FLT3 приводят к независимой от лиганда димеризации и неконтролируемой активации рецептора.

FLT3 состоит из внеклеточного домена и двух цитоплазматических тирозинкиназных доменов, связанных друг с другом трансмембранным доменом. Рецепторная часть, расположенная на клеточной мембране, состоит из пяти иммуноглобулиноподобных доменов, которые могут связываться с лигандом. Внутриклеточная часть состоит из юкстамембранного или подмембранного домена (juxtamembrane domain, JMD) и двух каталитических тирозинкиназных доменов (tyrosine kinase domains, TKD1 и TKD2).

При ОМЛ встречаются два основных типа мутаций гена FLT3. Наиболее распространенной аномалией, на которую приходится до 34 % случаев ОМЛ, является внутреннее тандемное удвоение нуклеотидов (internal tandem duplication, ITD), иногда со вставками добавочных нуклеотидов в экзонах 14-15, 75% FLT3-ITD мутаций приводят к изменениям именно в области юкстамембранного домена. Измененный домен позволяет рецептору FLT3 активировать сигнальные пути без связывания с лигандом. Постоянная сигнализация приводит к неконтролируемой пролиферации аномальных, незрелых лейкоцитов, которые являются отличительной чертой острого миелоидного лейкоза.

Больные ОМЛ с мутацией FLT3-ITD имеют неблагоприятный прогноз заболевания с высокой частотой рецидивов и короткой средней продолжительностью жизни.

Другой тип аномалии гена FLT3 встречается у 5-10 % людей с ОМЛ и называется FLT3-TKD: D835 (90% среди FLT3-TKD) и del836 (10% среди FLT3-TKD). Мутация D835 приводит к замене аминокислоты аспарагин в положении 835. Del836 в ТКD приводит к потере аминокислоты изолейцин в 836 положении. Подобно мутациям FLT3-ITD, мутации FLT3-TKD приводят к неконтролируемой активации рецептора FLT3 и постоянной передаче сигналов, что приводит к острой миелоидной лейкемии. Мутации FLT3-TKD отличаются от FLT3-ITD по своим трансформирующим возможностям.

Мутации в гене FLT3 являются независимым неблагоприятным прогностическим фактором при остром миелоидным лейкозе. Вместе с тем, пациентам с выявленными мутациями в FLT3 может быть рекомендована терапия таргетными препаратами – низкомолекуляярными мультикиназными ингибиторами.

Идентификация мутаций *FLT3* состоит из четырех этапов:

- 1. Выделение ДНК из клинических образцов (не входит в состав набора)
- 2. ПЦР-амплификация целевого локуса ДНК
- 3. Рестрикция
- 4. Зтап обнаружения: капиллярный гель-электрофорез с последующим фрагментным анализом.

Выделение ДНК из образцов клинического материала пациента

Экстракцию ДНК можно проводить с помощью набора для экстракции ДНК любого производителя. Тем не менее, мы рекомендуем проводить выделение ДНК с помощью магнитных наночастиц или сорбентным методом с колонками, например Column DNA Kit (Inogene, Cat. No IG-CDK-100).

Извлеченную ДНК необходимо хранить при -20°C. Оптимальный диапазон концентрации ДНК составляет от 300 до 400 нг на одну ПЦР.

Набор предназначен для использования исключительно в исследовательских целях.

СОСТАВ НАБОРА

Комплект реагентов «**FLT3 Muta Prime FA Kit**» включает:

Компонент	Название реагента	Объем (мкл)	Кол-во
Вода, свободная от нуклеаз	Nuclease Free Water	1000	1 пробирка
Реакционная смесь	PCR mix	300	1 пробирка
Смесь праймеров	Primer Mix	150	1 пробирка
Эндонуклеаза рестрикции (EcoRV)	Restriction Enzyme	25	1 пробирка
Буфер для рестриктазы	Restriction Buffer	50	1 пробирка
Позитивные контроли: Контроль ДНК – дикий тип FLT3 Контроль ДНК - мутации FLT3 ITD/TKD	FLT3 MUT/WT	50	1 пробирка

Результат амплификации ДНК FLT3 ITD регистрируется по каналу флуоресценции Green/FAM, результат амплификации FLT3 TKD (D835) регистрируется по каналу Yellow/JOE/HEX/R6G генетического анализатора.

ВЫПОЛНЕНИЕ ИССЛЕДОВАНИЯ

- Перед началом работы разморозьте компоненты набора при комнатной температуре (в течение 15-30 мин). Перед применением реактивов убедитесь, что кристаллы льда полностью растаяли;
- Тщательно перемешайте все компоненты реакции, осадите капли с помощью настольной центрифуги - 10 сек при 1000 g (quick spin);
- Внесите приготовленную ПЦР-смесь в микропробирки для ПЦР объемом 0,2 мл. Расход реагентов на реакцию:

Таблица 1. Расход реагентов на одну ПЦР-реакцию

Компонент набора	ПЦР-смесь, объем (мкл)
PCR mix	12,0
Primer Mix	6,0
Nuclease Free Water	2 (до 25 мкл)

- Используя наконечник с аэрозольным барьером, добавьте 5 мкл образца ДНК пациента (300-400 нг) в пробирку с реакционной смесью. В каждой серии исследований используется контрольная ДНК (FLT3 MUT/WT) и контроль без добавления ДНК-матрицы (NTC-контроль) – 5 мкл на реакцию. Рекомендуемый конечный объем реакции ПЦР – 25 мкл.
- Поместите микропробирки в амплификатор;
- Запрограммируйте прибор для выполнения следующей программы амплификации

Таблица 2. Программа амплификации для твердотельных термоциклеров планшетного типа

Этап	Температура, °С	Время	Кол-во циклов
Hold	95	2 мин	-
	94	30 c	
Cycling	65	40 c	40
	72	30 c	
Store	10	8	-

Рестрикция

Для проведения рестрикции необходимо приготовить чистые микропробирки объемом 200мкл

Смешайте компоненты реакции рестрикции:

Nº	Название реагента	Объём, µl
1	dd H20	15,0 μl
2	Restriction Buffer	2,0 μl
3	Restriction Enzyme	1,0 μl
4	Ампликон (продукт амплификации)	2,0 μl

Программа рестрикции: 37°C - 2 часа.

Капиллярный гель-электрофорез

Последний этап выявления мутаций FLT3 (фрагментарный анализ) выполняется методом капиллярного гель-электрофореза на генетическом анализатое, например Life Technologies (3130, 3500, 3500xl) с полимером POP7 или POP4.

Для фрагментного анализа при обнаружении мутаций FLT3 могут быть использованы программы GeneMapper, Peak Scanner, GeneMarker.

Подготовка проб к фрагментному анализу

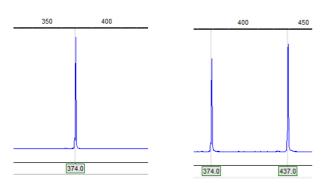
В 1,5 мл пробирке замешать:

		x1	x16
Hi-DiTM Formamide	User-supplied Thermo Fisher Scientific (4311320)	10 µl	170 µl
LIZ600 dye size standard	User-supplied Thermo Fisher Scientific (4366589)	0.4 µl	6.8 µl

- 1. Перемешайте и быстро центрифугируйте пробирку объемом 1,5 мл, чтобы удалить капли с внутренней стороны крышки.
 - 2. Добавьте по 10 мкл приготовленной смеси в каждую лунку 96-луночного планшета.
 - 3. В эти же лунки внести по 1 мкл ПЦР продукта.
- 4. Закрыть планшет резиновым уплотнителем (септой), центрифугировать 30 секунд с частотой вращения 1000 грт.
 - 5. Установить в каретку секвенатора.

ПРИМЕЧАНИЕ. Образцы, разбавленные формамидом Hi-DiTM, можно хранить не более 24 часов.

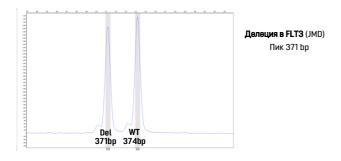
Формамид Hi-DiTM и продукты ПЦР следует хранить при -20°C, LIZ600 - при + 4°C.


АНАЛИЗ И УЧЕТ РЕЗУЛЬТАТОВ

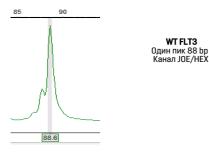
После обработки сигнала компьютером, результат фрагментного анализа виден как набор пиков в области амплификации.

Оценка результатов исследования на ITD мутацию проводится по каналу FAM.

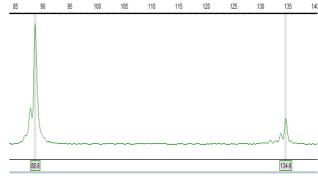
При анализе ITD мутации в гене FLT3 пик, соответствующий ампликону длиной 374


bp расценивается как продукт дикого типа гена (без мутации). В то же время иные
продукты с длиной ампликона более 374 bp расцениваются как мутантные.

Дикий тип FLT3 - Один пик 374 bp.


MUT FLT3-ITD - Наличие второго пика > 374bp

У некоторых пациентов с FLT3_ITD мутацией возможно появление дополнительных пиков более 374 bp, соответствующих ампликонам отопухолевых клеток с иной мутацией. Также в редких случаях наблюдается наличие ампликонов короче 374 bp, что указывает на возможное наличие делеции в юкстамембранном домене гена. В таких случаях результаты исследования необходимо подтверждать секвенированием



При обнаружении мутации FLT3-ITD необходимо рассчитать аллельное соотношение по формуле: mut FLT3/ wt FLT3, где mut FLT3 и wt FLT3 - площади под соответствующими пиками на электрофореграмме.

Оценка результатов исследования на ТКD мутацию проводится по каналу JOE/HEX. Пик, соответствующий продукту **дикого типа имеет длину ампликона 88 bp**.

MUT FLT3- D835 Наличие второго пика 134 bp

В случае неэффективной рестрикции наблюдается наличие ампликона длиной 154 bp

Неэффективная рестрикция Ампликон длиной 154 bp Канал JOE/HEX

Наличие продукта с длиной ампликона менее 134 bp косвенно указывает на наличие делеции в 836 кодоне (подтверждается секвенированием)

СПРАВОЧНАЯ ИНФОРМАЦИЯ

Дополнительную информацию можно получить в следующих источниках:

- Mrinal M. Patnaik. The importance of FLT3 mutational analysis in acute myeloid leukemia. //Leukemia and Lymphoma.Volume 59, 2018 - Issue 10.
- Naval Daver, Richard F. Schlenk, Nigel H. Russell, and Mark J. Levis.
 Targeting FLT3 mutations in AML: review of current knowledge and evidence.
- //Leukemia. 2019; 33(2): 299–312
 Kathleen M. Murphy et al. Detection of FLT3 Internal Tandem Duplication and D835 Mutations by a Multiplex Polymerase Chain Reaction and Capillary Electrophoresis Assay. // JMD May 2003, Vol. 5, No. 2: 96-102

Отбор и хранение образцов

Образец крови или костного мозга с ЭДТА. Материал помещают в пробирку типа Vacutainer (BD) с 6% раствором ЭДТА. Закрытую пробирку несколько раз переворачивают.

ДОПОЛНИТЕЛЬНЫЕ РЕАГЕНТЫ

Варианты наборов реагентов для выделения ДНК:

- o QIAamp DNA Blood Mini Kit (50) (Cat No. 51104, Qiagen, Германия)
- o Column DNA Kit (кат. номер IG-CDK-100, Inogene, Россия)

Реагенты, необходимые для проведения капиллярного гельэлектрофореза:

- Hi-DiTM Formamide (Cat No. 4311320, Thermo Fisher Scientific)
- o LIZ600 dye size standard (Cat No. 4366589, Thermo Fisher Scientific)

производитель:

OOO «Иноген»
197376 Санкт-Петербург, наб. реки Карповки д.5

тел. (812) 921-70-15 www.inogene.ru email: info@inogene.ru